ECS 315: Probability and Random Processes

2017/1

HW 12 — Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1 (Yates and Goodman, 2005, Q3.3.4). The pdf of random variable Y is

$$f_Y(y) = \begin{cases} y/2 & 0 \le y < 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find $\mathbb{E}[Y]$.
- (b) Find Var Y.

Problem 2 (Yates and Goodman, 2005, Q3.3.6). The cdf of random variable V is

$$F_V(v) = \begin{cases} 0 & v < -5, \\ (v+5)^2/144, & -5 \le v < 7, \\ 1 & v \ge 7. \end{cases}$$

- (a) What is $f_V(v)$?
- (b) What is $\mathbb{E}[V]$?

(c) What is Var[V]?

E[g(v)]= Jg(w) f(w)dw

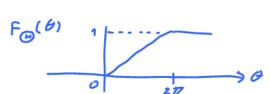
(d) What is $\mathbb{E}[V^3]$?

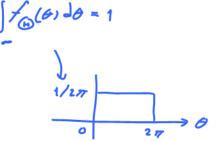
Problem 3 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval (-5,5).

- (a) What is its pdf $f_X(x)$?
- (b) What is its cdf $F_X(x)$?

- (c) What is $\mathbb{E}[X]$?
- (d) What is $\mathbb{E}[X^5]$?

(e) What is $\mathbb{E}\left[e^X\right]$?



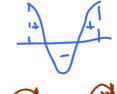


Problem 4 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the $f(\theta) = \begin{cases} 1/2\pi, & 0 < \theta < 2\pi, \\ 0, & \text{otherwise}. \end{cases}$ interval $(0, 2\pi)$.

(a) Consider another random variable X defined by

$$X = 5\cos(7t + \Theta) = 9(\Theta)$$

$$X = 5\cos(7t + \Theta) = 9(\Theta)$$
where t is some constant. Find $\mathbb{E}[X]$.
$$\mathbb{E}[\times] = \mathbb{E}[g(\Theta)] = g(\Theta) =$$



Consider another random variable Y defined by

$$Y = 5\cos(7t_1 + \Theta) \times 5\cos(7t_2 + \Theta) = 9$$

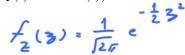
where t_1 and t_2 are some constants. Find $\mathbb{E}[Y]$.

Problem 5. A random variable X is a Gaussian random variable if its pdf is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2},$$

for some constant m and positive number σ . Furthermore, when a Gaussian random variable has m=0 and $\sigma=1$, we say that it is a standard Gaussian random variable. There is no closed-form expression for the cdf of the standard Gaussian random variable. The cdf itself is denoted by Φ and its values (or its complementary values $Q(\cdot)=1-\Phi(\cdot)$) are traditionally provided by a table.

Suppose Z is a standard Gaussian random variable.



(a) Use the table to find the following probabilities:

(i)
$$P[Z < 1.52] = P[Z \le 1.52] = F_2(1.52) = \overline{\Phi}(1.52) \approx 0.935$$

(ii)
$$P[Z < -1.52] = P[Z \le -1.51] = F_2(-1.52) = \Phi(-1.51) = 1 - \Phi(1.52)$$

 $\approx 1 - 0.935 = 0.0643$

(iii)
$$P[Z > 1.52]$$

(iv)
$$P[Z > -1.52]$$

(v)
$$P[-1.36 < Z \le 1.52] = F_{2}(b) - F_{2}(a) = \Phi(b) - \Phi(a) = \Phi(b) - (1 - \Phi(a))$$

= $\Phi(1.52) - (1 - \Phi(1.34)) = ...$

(b) Use the Φ table to find the value of c that satisfies each of the following relation.

(i)
$$P[Z > c] = 0.14$$

(ii)
$$P[-c < Z < c] = 0.95$$

Problem 6. The peak temperature T, as measured in degrees Fahrenheit, on a July day in New Jersey is a $\mathcal{N}(85, 100)$ random variable.

Remark: Do not forget that, for our class, the second parameter in $\mathcal{N}(\cdot, \cdot)$ is the variance (not the standard deviation).

- (a) Express the cdf of T in terms of the Φ function.
- (b) Express each of the following probabilities in terms of the Φ function(s). Make sure that the arguments of the Φ functions are positive. (Positivity is required so that we can directly use the Φ/Q tables to evaluate the probabilities.)
 - (i) P[T > 100]
 - (ii) P[T < 60]
 - (iii) $P[70 \le T \le 100]$
- (c) Express each of the probabilities in part (b) in terms of the Q function(s). Again, make sure that the arguments of the Q functions are positive.
 - (i) P[T > 100]
 - (ii) P[T < 60]
 - (iii) $P[70 \le T \le 100]$
- (d) Evaluate each of the probabilities in part (b) using the Φ/Q tables.

- (i) P[T > 100]
- (ii) P[T < 60]
- (iii) $P[70 \le T \le 100]$
- (e) Observe that the Φ table ("Table 4" from the lecture) stops at z=2.99 and the Q table ("Table 5" from the lecture) starts at z=3.00. Why is it better to give a table for Q(z) instead of $\Phi(z)$ when z is large?

Problem 7. Suppose that the time to failure (in hours) of fans in a personal computer can be modeled by an exponential distribution with $\lambda = 0.0003$.

(a) What proportion of the fans will last at least 10,000 hours?

(b) What proportion of the fans will last at most 7000 hours?

[Montgomery and Runger, 2010, Q4-97]